CENTER FOR COMPUTER AIDED DESIGN

September 26, 2002

College of Engineering
The University of Iowa
Iowa City, Iowa

FOCUS AREAS OF RESEARCH

DESIGN AND OPTIMIZATION

- Design Sensitivity Analysis and Optimization
- Geometric Modeling and CAD
- Multidisciplinary Design Optimization
- Optimization Algorithms
- Reliability-Based Design Optimization (Design for 6-Sigma)
- Topology Optimization

SOLID MECHANICS

- Computational Mechanics
- Composite Materials
- Meshfree Methods
- Probabilistic Mechanics & Reliability
- Biomechanics

HUMAN-SYSTEM INTERACTION

- Human Interaction with Automation
- Human Computer Interaction VR
- Human Performance
- Digital Human Simulation
- Ergonomic Design

KINEMATICS AND DYNAMICS

- Mechanisms and Robotics
- Multibody Dynamics and Simulations
- Real Time Dynamics and Haptics
- Nonlinear Vibrations

RESEARCH PERSONNEL

- 12 (+4) Faculty Members:
 - Three Civil & Environmental Engineering
 - Three Industrial Engineering
 - Five Mechanical Engineering
 - One Mathematics
 - One Mechanical Systems (Multiphysics or Multiscale) and Three Industrial Engineering (Uncertainty & Reliability) Faculty Are Being Recruited
- 12 Staff Members:
 - 5 Ph.D.s and 1 M.S. Technical Staff
 - 3 M.S.s, 2 B.S.s, 1 Certified Secretarial Support Personnel

ARMY MECHANICAL PHYSICS-OF-FAILURE MODELING AND SIMULATION

Objectives

- ✓ Validate dynamics loading from system level to component level
- ✓ Use lab/field test data to validate loading & reliability predictions
- ✓ Validate dynamic strain using measured data

- ✓ Predict fatigue life based on measured strain and compare with simulation life
- ✓ Develop repeatable modeling and simulation process and Book of Knowledge

Drawbar cracked after 1,671 miles on Perryman course #3 at averaged speed of 12.5 mph.

ARMY MECHANICAL PHYSICS-OF-FAILURE MODELING AND SIMULATION

ARMY MECHANICAL PHYSICS-OF-FAILURE MODELING AND SIMULATION

Dynamic Stress & Strain Computation

Dynamic Stress Computation

- Extract dynamic analysis results (Duty cycle information)
- **Quasi-static load vectors generation**
- **Stress coefficient calculation**
- **Dynamic stress superposition**
- Calculate von Mises stress and principal stress histories
- Multi-axial elastic-plastic strain conversion using elastic finite element analysis results

RELIABILITY-BASED DESIGN OPTIMIZATION

 Due to competitive market, designs are pushed to the limit of the design constraints using optimization, leaving little or no room in manufacturing variability ⇒ Leads to higher manufacturing costs, which hinders product marketability.

- RBDO methodology provides not only optimum design, but also a confidence range ⇒ 6-Sigma Design for Manufacturing.
- Reliability-Based Design vs. Robust Design

UNCERTAINTY TYPES

- Physical Uncertainty: Material properties, dimensions, & loads
- Statistical Uncertainty: Due to limited sample sizes, probabilistic model (distribution type and its parameters) is uncertain lack of information
- Model Uncertainty: Uncertainty of mathematical models and numerical methods due to simplifying assumptions, unknown boundary conditions, unknown effects of of other variables not included in the model, etc.

PERFORMANCE MEASURE APPROACH OF RBDO

RIA:
$$-\beta_s + \beta_t \equiv \Phi^{-1} \left(\int_{G(\mathbf{X}) < 0} \cdots \int f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} \right) + \beta_t \leq 0$$

PMA: $-G_p \equiv -F_G^{-1} \left(\int_{G(\mathbf{X}) < g^*} \cdots \int f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} \right) \leq 0$

FORM & Hybrid Mean-Value Method

MULTIDISCIPLINARY CRASH RBDO

Frontal Impact

50% Frontal Offset Impact

Roof Crush

Side Impact

Analyses Using RADIOSS on SGI Origin 3000

Minimize Vehicle Weight

Subject to

Roof Crush Constraints:

 $P(\text{Crush distance D} \le 5'') \ge 90\%$

P(Critical load peak Pcr ≥ 27kN) ≥ 90%

Full Frontal Impact Constraints: $P(\text{HIC} \le 370) \ge 90\%$

 $P(\text{Chest G} \le 42) \ge 90\%$

 $P(P_{\text{total}} \le 10 \%) \ge 90 \%$

50% Frontal Offset Impact Constraints:

 $P(\text{Toe board intrusion} \leq 11") > 90\%$

Side Impact Constraints:

 $P(V*C \le 0.58) \ge 90\%$

 $P(D_{\text{upper rib}} \le 27.2) \ge 90\%$

 $P(D_{\text{middle rib}} \le 27.2) \ge 90\%$

 $P(D_{lower rib} \le 27.2) \ge 90\%$

MICRO-ELECTRONICS RELIABILITY

Fatigue Life

ISSUES IN MULTISCALE MODELING OF HETEROGENEOUS MATERIALS

• Develop and employ micro-scale analysis tools that relate microstructure, and micromechanics.

•Homogenize:

•Take micro-scale property-structure behaviors and translate (via averaging or filtering) to macroscopic response.

•Localize:

 Given a state of macroscopic deformation, temperature and the microstructure, use micromechanics to update microfields and microstructure.

Essence:

- Determine how microscale phenomena show up on the macroscale;
- Determine how macroscopic conditions evolve microstructure;

MULTI-SCALE ANALYSIS WITH COMPOSITES

MULTI-SCALE ANALYSIS WITH METALS

SCALE-BRIDGING RELATIONS

$$\boldsymbol{X}^{n+1} = \boldsymbol{X}^{n} / \boldsymbol{\varepsilon}_{n+1}$$

$$\boldsymbol{x}^{2} - \boldsymbol{X}^{2} = \boldsymbol{u}^{2} (\boldsymbol{X}^{0}, \boldsymbol{X}^{1}, \boldsymbol{X}^{2}) = \boldsymbol{u}^{1} (\boldsymbol{X}^{0}, \boldsymbol{X}^{1}) + \boldsymbol{u}^{2*} (\boldsymbol{X}^{2}) \qquad \text{microscale}$$

$$\boldsymbol{x}^{1} - \boldsymbol{X}^{1} = \boldsymbol{u}^{1} (\boldsymbol{X}^{0}, \boldsymbol{X}^{1}) = \boldsymbol{u}^{0} (\boldsymbol{X}^{0}) + \boldsymbol{u}^{1*} (\boldsymbol{X}^{1}) \qquad \text{mesoscale}$$

$$\boldsymbol{x}^{0} - \boldsymbol{X}^{0} = \boldsymbol{u}^{0} (\boldsymbol{X}^{0}) \qquad \text{macroscale}$$

$$\boldsymbol{u}^{n+1} = \boldsymbol{u}^{n} + \boldsymbol{\varepsilon}_{n+1} \boldsymbol{u}^{n+1*} + \cdots$$

$$\boldsymbol{s}^{n} = \left\langle \boldsymbol{s}^{n+1} \left(\boldsymbol{X}^{0}, \dots, \boldsymbol{X}^{n+1} \right) \right\rangle_{O_{s}^{X^{n+1}}}; \boldsymbol{F}^{n} = \left\langle \boldsymbol{F}^{n+1} \left(\boldsymbol{X}^{0}, \dots, \boldsymbol{X}^{n+1} \right) \right\rangle_{O_{s}^{X^{n+1}}}$$

$$\boldsymbol{s}^{n+1} = \boldsymbol{s}^{n} (\boldsymbol{X}^{0}, \dots, \boldsymbol{X}^{n}) + \boldsymbol{s}^{n+1*} (\boldsymbol{X}^{n+1}); \boldsymbol{F}^{n+1} = \boldsymbol{F}^{n} (\boldsymbol{X}^{0}, \dots, \boldsymbol{X}^{n}) + \boldsymbol{F}^{n+1*} (\boldsymbol{X}^{n+1})$$

$$\left\langle \boldsymbol{s}^{n+1*} \right\rangle_{O_{s}^{X^{n+1}}} = \boldsymbol{\theta}; \left\langle \boldsymbol{F}^{n+1*} \right\rangle_{O_{s}^{X^{n+1}}} = \boldsymbol{\theta}.$$

MICROMECHANICS-BASED DAMAGE MODEL FOR COMPOSITES

Debonding Modes

Uniaxial Tension

Shear Loading

MICROMECHANICS-BASED HYPERELASTIC MODEL FOR MAGNETOSTRICTIVE COMPOSITES

Ferromagnetic Particle-Reinforced Composites (Jolly 1996)

The University of Iowa College of Engineering

Micromechanical Modeling of Magnetostrictive Composites

Magnetic Field of Fe-Reinforced Composites

Quantitative Prediction of Finite Elasticity of Fe Particle Intelligent Composites (L. Sun 2002)

MICROPLASTICITY OF MATERIALS 3-D DISLOCATION DYNAMICS SIMULATION

Stress Simulation of Frank-Read Source Dislocations (L. Sun 1999)

Simulation of Plastic Channel Generation due to Dislocation Interaction with Point Defects (L. Sun 2001)

Plastic Slip Emanating from Two F-R Sources Interacting with Point Defects in Cu. (L. Sun 2000)

Stress Simulation of Thin Film Dislocation Loops (L. Sun 2002)

STOCHASTIC MATERIAL MODEL

Graphite fiber in epoxy matrix

Cellular Aluminum

Functionally Graded Material

PDF at any given point

Correlation between any two points

FRACTURE & DAMAGE SIMULATION

- FEM Continuum Damage Mechanics
- Mesh-Free Simulation of Fracture

STOCHASTIC FRACTURE MECHANICS

INVERSE PROBLEMS IN MECHANICS USING OPTIMIZATION

- ◆ Identification of materials (constitutive models)
 - ✓ Constitutive models for elastoplastic and viscoplastic material behavior

- ✓ Development of simplified models for impact loading
- ✓ Development of simplified models for crushing of structural components

FRICTIONAL CONTACT ANALYSIS USING OPTIMIZATION

- Solution with the current frictional contact analysis methods depends on the time/load step and value of the penalty parameter
- New methods developed using Augmented Lagrangian approach
 - ✓ Finite value of the penalty parameter is calculated automatically
 - ✓ Accuracy of the solution is not dependent on the time/load step or the starting value of the penalty parameter

CONTINUUM MECHANICS CONSTITUTIVE MODELING & SIMULATIONS

Impact

Fibrous Membrane

- Modeling of Structured Media
 - ◆ Theory for evolving microstructure
 - ♦ Anisotropic solids

- Computational plasticity
- ◆ Large strain thermoelasticity
- Treatment for Material Constraints
 - **♦** Incompressibility
 - **♦** Wrinkling

Necking

Shear Band in Anisotropic solids

